Mathematical Functions and Operators
Mathematical Operators
| Operator | Description |
|---|---|
+ | Addition |
- | Subtraction |
* | Multiplication |
/ | Division (integer division performs truncation) |
% | Modulus (remainder) |
Mathematical Functions
abs(x) -> [same as input]
Returns the absolute value of x.
cbrt(x) -> double
Returns the cube root of x.
ceil(x) -> [same as input]
This is an alias for ceiling{.interpreted-text role="func"}.
ceiling(x) -> [same as input]
Returns x rounded up to the nearest integer.
cosine_similarity(x, y) -> double
Returns the cosine similarity between the sparse vectors x and y:
SELECT cosine_similarity(MAP(ARRAY['a'], ARRAY[1.0]), MAP(ARRAY['a'], ARRAY[2.0])); -- 1.0
degrees(x) -> double
Converts angle x in radians to degrees.
e() -> double
Returns the constant Euler\'s number.
exp(x) -> double
Returns Euler\'s number raised to the power of x.
floor(x) -> [same as input]
Returns x rounded down to the nearest integer.
from_base(string, radix) -> bigint
Returns the value of string interpreted as a base-radix number.
inverse_normal_cdf(mean, sd, p) -> double
Compute the inverse of the Normal cdf with given mean and standard deviation (sd) for the cumulative probability (p): P(N \< n). The mean must be a real value and the standard deviation must be a real and positive value. The probability p must lie on the interval (0, 1).
normal_cdf(mean, sd, v) -> double
Compute the Normal cdf with given mean and standard deviation (sd): P(N \< v; mean, sd). The mean and value v must be real values and the standard deviation must be a real and positive value.
inverse_beta_cdf(a, b, p) -> double
Compute the inverse of the Beta cdf with given a, b parameters for the cumulative probability (p): P(N \< n). The a, b parameters must be positive real values. The probability p must lie on the interval [0, 1].
beta_cdf(a, b, v) -> double
Compute the Beta cdf with given a, b parameters: P(N \< v; a, b). The a, b parameters must be positive real numbers and value v must be a real value. The value v must lie on the interval [0, 1].
ln(x) -> double
Returns the natural logarithm of x.
log(b, x) -> double
Returns the base b logarithm of x.
log2(x) -> double
Returns the base 2 logarithm of x.
log10(x) -> double
Returns the base 10 logarithm of x.
mod(n, m) -> [same as input]
Returns the modulus (remainder) of n divided by m.
pi() -> double
Returns the constant Pi.
pow(x, p) -> double
This is an alias for power{.interpreted-text role="func"}.
power(x, p) -> double
Returns x raised to the power of p.
radians(x) -> double
Converts angle x in degrees to radians.
rand() -> double
This is an alias for random(){.interpreted-text role="func"}.
random() -> double
Returns a pseudo-random value in the range 0.0 \<= x \< 1.0.
random(n) -> [same as input]
Returns a pseudo-random number between 0 and n (exclusive).
round(x) -> [same as input]
Returns x rounded to the nearest integer.
round(x, d) -> [same as input]
Returns x rounded to d decimal places.
sign(x) -> [same as input]
Returns the signum function of x, that is:
- 0 if the argument is 0,
- 1 if the argument is greater than 0,
- -1 if the argument is less than 0.
For double arguments, the function additionally returns:
- NaN if the argument is NaN,
- 1 if the argument is +Infinity,
- -1 if the argument is -Infinity.
sqrt(x) -> double
Returns the square root of x.
to_base(x, radix) -> varchar
Returns the base-radix representation of x.
truncate(x) -> double
Returns x rounded to integer by dropping digits after decimal point.
width_bucket(x, bound1, bound2, n) -> bigint
Returns the bin number of x in an equi-width histogram with the
specified bound1 and bound2 bounds and n number of buckets.
width_bucket(x, bins) -> bigint
Returns the bin number of x according to the bins specified by the
array bins. The bins parameter must be an array of doubles and is
assumed to be in sorted ascending order.
Statistical Functions
wilson_interval_lower(successes, trials, z) -> double
Returns the lower bound of the Wilson score interval of a Bernoulli
trial process at a confidence specified by the z-score z.
wilson_interval_upper(successes, trials, z) -> double
Returns the upper bound of the Wilson score interval of a Bernoulli
trial process at a confidence specified by the z-score z.
Trigonometric Functions
All trigonometric function arguments are expressed in radians. See unit
conversion functions degrees{.interpreted-text role="func"} and
radians{.interpreted-text role="func"}.
acos(x) -> double
Returns the arc cosine of x.
asin(x) -> double
Returns the arc sine of x.
atan(x) -> double
Returns the arc tangent of x.
atan2(y, x) -> double
Returns the arc tangent of y / x.
cos(x) -> double
Returns the cosine of x.
cosh(x) -> double
Returns the hyperbolic cosine of x.
sin(x) -> double
Returns the sine of x.
tan(x) -> double
Returns the tangent of x.
tanh(x) -> double
Returns the hyperbolic tangent of x.
Floating Point Functions
infinity() -> double
Returns the constant representing positive infinity.
is_finite(x) -> boolean
Determine if x is finite.
is_infinite(x) -> boolean
Determine if x is infinite.
is_nan(x) -> boolean
Determine if x is not-a-number.
nan() -> double
Returns the constant representing not-a-number.